THE IMPACT OF NEOS AND THEIR FRAGMENTS RECORDED FROM THE GROUND: ONGOING RESEARCH LINES OF THE SPANISH FIREBALL NETWORK

Josep M. Trigo-Rodríguez⁽¹⁾, Jordi Llorca⁽²⁾, José M. Madiedo⁽³⁾, I.P. Williams⁽⁴⁾, A.J. Castro-Tirado⁽⁵⁾, José L. Ortiz⁽⁵⁾, Jacinto Alonso-Azcárate⁽⁶⁾, Jaime Zamorano⁽⁷⁾, Víctor Lanchares⁽⁸⁾, and José A. Docobo⁽⁹⁾, and Juan Fabregat⁽¹⁰⁾.

> ⁽¹⁾Institute of Space Sciences (CSIC-IEEC) Campus UAB, Facultat de Ciències,Torre C-5 parells Bellaterra, Barcelona, Spain Email:trigo@ieec.uab.es

 (2)Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya (UPC)
 Diagonal 647, ed. ETSEIB. 08028 Barcelona, Spain. Email: jordi.llorca@upc.edu

⁽³⁾ Observatorio Astronómico de la Universidad de Huelva CIECEM, Parque Dunar S/N, Matalascañas 21760 Almonte, España. Email:madiedo@uhu.es

(4) Astronomy Unit, Queen Mary, University of London, Mile End Rd. London E1 4NS, UK. Email: i.p.williams@qmul.ac.uk

⁽⁵⁾Instituto de Astrofísica de Andalucía (CSIC) Instituto de Astrofísica de Andalucía (IAA-CSIC), PO Box 3004, 18080 Granada. *Email:ajct@iaa.es*

⁽⁶⁾Universidad de Castilla-La Mancha (UCLM) Campus Fabrica de Armas Avda. Carlos, III s/n, 45071 Toledo Email: Jacinto.Alonso@uclm.es

⁽⁷⁾Universidad Complutense de Madrid (UCM)
Facultad de Ciencias Físicas - Universidad Complutense –
28040 Madrid (España)
Email: jaz@astrax.fis.ucm.es

⁽⁸⁾ Dpto. Matemáticas y Computación, Universidad de La Rioja. C/ Luis de Ulloa s/n, 26004, Logroño, La Rioja, Spain *Email: vlancha@unirioja.es*

> ⁽⁹⁾Universidade de Santiago de Compostela Observatorio Astronómico Ramón María Aller Apartado de Correos/ P.O. Box 197 Santiago de Compostela Email: oadoco@usc.es

⁽¹⁰⁾Universitat de València Observatori Astronòmic. Edifici Instituts d'Investigació. Polígon La Coma. 46980 Paterna València. Email: Juan.Fabregat@uv.es

ABSTRACT

A continuous monitoring of the night sky all over Spain will be completed in 2009. This involves the recording over a very large surface area of 500,000 km², but new CCD and video cameras operated by the Spanish Meteor and Fireball Network (SPMN) allows this target to be achieved. Through the use of these new techniques the SPMN can obtain new information regarding the dynamical processes that deliver meteorites to the Earth. It transpires that the main asteroid belt is not the only source of these fireballs, Near Earth Objects (NEOs) and Jupiter Family Comets (JFCs) may also play a role. To obtain more information in this regard, new efforts are needed to compare the orbits of large meteoroids reaching the Earth with those of the members of NEO and JFC populations. By numerically integrating their orbits back in time it may be possible to identify meteoroids delivered by other mechanisms like such as catastrophic disruptions or collisions.

INTRODUCTION

The SPanish Meteor and Fireball Network (SPMN) is a project to study meteor and fireball events occurring over Spain and the bordering countries [1]. Network operations started in 2004 using high-resolution all-sky CCD cameras from a number of different stations located around the Mediterranean coast [2, 3]. Over the years, these stations have been complemented by using video systems [4]. The active group working on these projects consists of astrophysicists, chemists, and geologists working together to collect information on meteors and fireballs but with particular emphasis on the recovery of meteorites. Large fireballs can be the precursors of meteorite falls and modern technology can be applied to track their atmospheric trajectories, and predict probable landing sites. To do this it is necessary to record the luminous trail from at least two different locations. The different SPMN recording stations currently operative are in Fig. 1. From the atmospheric trajectory and the computed initial velocity and geocentric radiant the heliocentric orbit can be determined. Due to the difficulty of recording meteorite-dropping bolides, orbital information has so far only been only computed for nine meteorites, the last one being the Villalbeto de la Peña meteorite in Spain [5]. Meteorites are valuable samples of other solar system bodies, but usually are recovered without information regarding their progenitors. Obtaining orbital information for meteorites that might land at some future date is vital if we are to understand the dynamical processes that deliver meteorites to the Earth. Recent results suggest that the main asteroid belt might not be the only source, Near Earth Objects (NEOs) [6] and Jupiter Family Comets (JFCs) [7] populations may also be significant.

Fig. 1. The SPMN stations currently operating with the different imaging systems that are being used also shown. The circles represent the 400-km wide fireball detection areas optimally covered from each station, although the detection limit for bright bolides is about 550 km.

1ST IAA PLANETARY DEFENSE CONFERENCE: 27-30 APRIL 2009, GRANADA, SPAIN

Consequently, the SPMN meteorite recovery program is designed to obtain as much information as possible of the atmospheric transit of the progenitor meteoroid. We are putting all our effort in obtaining records of large fireball events to obtain the heliocentric orbits of new meteorites. It is obviously a big challenge because meteorite-dropping bolides are typically unexpected events that produce a luminous phase (the fireball) for a very short time interval of only a few seconds. Obtaining dynamic information regarding meteorite-dropping bolides is crucial in order to obtain information concerning the physical mechanisms that are placing meteorites on orbits that can lead to collision with the Earth. Similar mechanisms are expected to be playing a role in the delivery of largest bodies, particularly Near Earth Objects (NEOs) to the Earth Environment.

METEORITE RECOVERIES: VILLALBETO DE LA PEÑA AND PUERTO LÁPICE DAYLIGHT BOLIDES

In 2004 the SPMN had already created the infrastructure necessary to compile the casual records of a remarkable daylight fireball that had been obtained, and promoted the recovery of meteorites associated with the event. The event, on January 4, 2004,, was called Villalbeto de la Peña after the village where the first meteorites were found and resulted in the first recovered meteorite fall in Spain for 56 years. A casual video recording and several photographs allowed a determination of the fireball trajectory, its released energy, and strewnfield reconstruction to be made [8]. From the determination of the radiant position in the sky and the computed initial velocity, the heliocentric orbit of the meteoroid was also obtained. This became only the ninth orbit of a meteorite-producing fireball to be obtained (Fig. 2) [5]. Three vears later, on May 10, 2007 SPMN participated in the recovery of Puerto Lápice eucrite type meteorite after giving community data about the impressive daylight bolide that gave rise to the meteorite fall [9]. To date, the SPMN homepage (www.spmn.uji.es) receives thousands of visits every month, and has become an updated reference of the fireball events that have occurred all over Spain, and bordering countries. Our homepage is also playing a role in popularizing astronomy, and meteorite studies among the public.

Fig. 2. Left: The heliocentric orbit of Villalbeto de la Peña meteoroid compared with the orbits of previously determined meteoroids dropping meteorites: Přibram (Pr, recovered in 1959), Lost City (LC, 1970), Innisfree (IN, 1977), Peeskill (PE, 1992), Tagish Lake (TL, 2000), Morávka (Mo, 2000), Neuschwanstein (Ne, 2002), Park Forest (PF, 2003), and Villalbeto de la Peña (2004). Only in the case of Villalbeto de la Peña orbit the uncertainty in the velocity is shown. Right: The Villalbeto de la Peña bolide after its main fragmentation photographed from Santa Columba de Corueño (León) by María M. Robles.

FORECASTING THE IMPACT OF SMALL NEO: THE 2008TC3 PRECEDENT

On October 6, 2008 the discovery by the Catalina Sky Survey of asteroid 2008TC3 only twenty hours before its final impact with the Earth opened a new age of research into fireballs and meteorites. For the first time the impact with a small asteroid was forecasted. Nowadays NEO searches are using telescopes sensitive enough to detect boulders with typical sizes of only a few meters. The importance of such discoveries lies in the fact that they could be the progenitors of meteorite falls.

Observations from space by Meteosat satellites of the fragments from 2008TC3 allowed predictions to be made concerning fall of meteorites and a team leaded by Peter Jenniskens (Seti Institute) with the support of the University of

1ST IAA PLANETARY DEFENSE CONFERENCE: 27-30 APRIL 2009, GRANADA, SPAIN

Khartoum has recently recovered meteorites from this event [10]. This case is very important because the impact of the progenitor meteoroid was forecasted for the first time, but in addition a precise heliocentric orbit was achieved on the basis of the 20-hours global monitoring of this object. The recovered meteorites are also the first obtained from a NEO. Unfortunately the bolide was not imaged from the ground, but probably the increasing capacity of NEO telescopic surveys will provide new chances to achieve it. That would be an important opportunity to test the accuracy of the determination of orbits from fireballs. To have such capacity in the near future, our network is setting up mobile video stations that will allow recording other forecasted impacts (see Fig. 3).

Fig. 3. A mobile SPMN recording station. a) System control table. b) Different sound and video detectors.

IDENTIFYING EARTH-IMPACTING DEBRIS FROM NEOs

Whether or not streams populated by large meteoroids capable of producing meteorite-dropping bolides exist is a topic of current debate. Halliday was the first to suggested the existence of groups of meteorite-producing bolides [11]. Meter-sized bodies suffer significant gravitational and non-gravitational perturbations (e.g. the Yarkovsky effect) that can produce an extremely fast evolution of the meteoroid orbits. The possible common origin of Pribram and Neuschwanstein meteorites was recently claimed on the basis of their orbital similarity [12], but the fact that they are different meteorite types keeps this result controversial. The association of Pribram and Neuschwanstein meteorites was dynamically investigated recently [13], and the conclusion was that the timescales for orbital decoherence are too short $(10^4 \text{ to } 10^5 \text{ years})$ in comparison with the derived age of both meteorites. However it has also been shown that meteorite streams on high inclination orbits might exists for longer than this [14]

To obtain new information regarding this topic, fireball networks need to modify their mode of operations. First, the "classical" coverage of fireball events during the night should be accompanied by daylight monitoring using the video techniques (see Fig. 4). By doing this, data sampling would be more complete and not biased towards those celestial sources (radiants) detectable during the night. Second, the different networks operating around the world should cooperate to search for paired fireball events. In this way, the chance of recording paired bolides would be significantly increased. Third, the area of coverage of fireball networks should be expanded through the use of new video techniques. Fourth, a wide cooperation with the minor body community should be relevant to identify particular asteroids as source of meteorites.

A particularly interesting research topic that should be explored is the identification of the main mechanisms that are producing large meteoroids from NEOs and other populations. While it is believed that collisions in the main asteroid belt are the main source of meteorites, other processes operating in other populations can also be significant contributors. There is growing evidence that many comets and small asteroids can have a rubble-pile structure. Such weakly-bounded aggregates would suffer disruption during close approaches to any massive bodies. Such scenario would be common for NEOs suffering close approaches with the terrestrial planets and the tidally-induced fragmentation of an NEO could lead to production of debris crossing the orbit of the Earth in much shorter timescales than those measured for delivery from the main asteroid belt. To obtain evidence regarding this we are carrying out a search among the meteoroid orbits obtained by the SPMN network and comparing them with those of currently catalogued NEOs (taken from the NeoDys catalogue). To test the link between the meteoroids and the NEOs, we perform numerical integrations of the orbits backwards in time. Using the Mercury 6 program [15] a hybrid symplectic integrator widely used in Solar System dynamics studies. To confirm a common origin between the meteoroids

1ST IAA PLANETARY DEFENSE CONFERENCE: 27-30 APRIL 2009, GRANADA, SPAIN

producing the fireballs and the NEOs, the orbits are usually integrated back in time for at least 100,000 years. Perturbations from the planets Venus, Earth, Mars, Jupiter and Saturn are included. When a good orbital match is found, and the evolution of the main orbital elements occurs in parallel, it is safe affirming that a common origin is likely.

By using that dynamic procedure we have obtained evidence that some NEOs could be a source of meteorites. We found that NEO 2002NY40 was probably the source of at least two of three bright bolides recorded from several stations by the Finish and Spanish Fireball networks in 2006. These meteoroids were forming a complex with other NEO called 2004NL8 that would be a source of LL chondrites to the Earth [6]. We suggested that the origin of this complex would be the disintegration of a progenitor asteroid during a close approach to the Earth or Mars, but several scenarios are open [16].

Fig. 4. A daylight fireball imaged with a color video camera from Sevilla SPMN station. The event took place on Sept. 12, 2008 at 5h41m35.6s UTC.

CATASTROPHIC DISRUPTIONS: A WAY FOR DELIVERY OF METEORITES FROM COMETS?

It is generally accepted that amongst the NEO population there are many dormant or extinct comets. The boulders observed during disruption of comet C/1999 S4 LINEAR [17] were tens of meters in size and are far bigger than the cometary meteoroids that reach the Earth during meteor showers. The catastrophic disruption of a comet nucleus could produce dense and tough meteoroids released from the deep interior of the nucleus. These meteoroids could have very different physical properties from those that produce meteor showers which are essentially surface dust grains. Such particles released by sublimation of ices during perihelion passages of their parent comets have maximum sizes of few centimeters. Larger particles cannot be lifted off the cometary surface as gravity is stronger than gas drag for them [18].

On July 11, 2008 a fireball of magnitude -18 was recorded over Salamanca province (Spain), ending with very bright flares at a height of about 22 km over a town called Béjar after which this event was named [7]. Three SPMN video cameras recorded the event together with a professional photographer (see Fig. 5). Fireball deceleration in the atmosphere suggests that the meteoroid approximately had an initial mass of 1.8 metric tons. Assuming a spherical shape, and the typical density of chondrites (2200 kg·m⁻³) this would correspond roughly to a 1.2 meter-sized meteoroid. After analyzing the observations, we discovered that the fireball followed an orbit more similar to Jupiter Family comets than asteroids. Further, the orbit was quite similar to the mean orbit of the Omicron Draconids, a meteoroid stream possibly produced during the catastrophic disruption of comet C/1919 Q2 Metcalf. The JFCs originate in the trans-Neptunian region and TNO's have been recently suggested a source of meteorites [19]. There is a reasonable probability (about a 10%) of having an Earth-crossing JFC. Fragments of JFCs can reach the Earth provided the geometry is favorable, and some of these fragments could be high-strength materials from the nucleus interior, and it follows that some of the chondritic meteorites, particularly in the CI-class [20] that we find on Earth, could be coming from comets. The parent body of Tagish Lake meteorite has been identified as a D-type dark asteroid formed in the outer part of the main belt [21]. Such a body could be an example of a main belt comet exhibiting sporadic activity like 133P/Elst-Pizarro [22]. We should recognize that cometary nuclei can show significant diversity, depending on their formation location and evolutionary history, and that their decaying products also deliver diverse materials to the Earth.

Fig. 5. The Béjar superbolide photographed from Torrelodones (Madrid) by Javier Pérez Vallejo.

Although catastrophic disruptions of comets are relatively frequent, it is obviously that having the debris left by the disruptive events crossing the Earth's orbit a short time after the disruption is a much rarer event. The probability of having the correct geometry for this is small, but fortunately not zero. The opportunity to study such an event is expected over the next few years [23]. Comet 73P/Schwassmann-Wachmann was observed suffering progressive disruption between 1995 and 2006, while encounters with these dust trails will occur in 2011, 2017, and 2022. The meteor shower associated with this comet produces weak meteor rates, but fireballs have being frequent in the last few years. The best geometric conditions to observe the recent debris from the 1995 disruption will occur on May 31, 2022 (Table 6g of [23]). A global campaign to study this shower over the years up to 2022 would provide very important clues on the demise of comets. In particular, a study of the physical properties (bulk density, dynamic strength, etc...), and composition of the fireballs would yield important information regarding the decay products and their subsequent evolution such as whether the fragments suffering a disruption cascade until becoming mm-sized meteoroids, or will some survive and remain as meter-sized bodies?

CLUES ON THE STRUCTURE AND COMPOSITION OF MINOR BODIES INFERRED FROM FIREBALL STUDIES

The SPMN are currently developing high-resolution (spatial and temporal) video cameras to record the evolution in the atmosphere of bright fireballs. Studies of the behaviour of meteoroids ablating in the Earth atmosphere provide plenty of information on the structure of the particles. From the measured deceleration the pre-atmospheric mass can be estimated, and from the study of the luminous path other physical properties such as the bulk density, dynamic strength, and porosity are derived. In particular, the dynamic (tensile) strength of the rocks is obtained from the depth of their penetration into the terrestrial atmosphere during the fireball phase [24]. While the luminous path of fragile meteoroids, commonly of cometary origin, end at heights of about 80 to 60 km, the luminous paths of meteorite-dropping bolides typically end at heights of about 30 to 20 km over the sea level. In fact, the maintenance of the luminous phase of the fireball down to such a low atmospheric level is indicative of still-ablating material or, in other words, of meteorite survival.

Fluffy cometary dust can be analysed through the study of interplanetary dust particles (IDPs) in the laboratory, although recently Stardust mission collected particles *in situ* from comet 81P/Wild 2 [25]. The bulk chemical composition of the main rocky elements of meteoroids can be derived through meteor spectroscopy [26]. Meteor spectroscopy provides valuable information about the ablation process and the chemical composition of the main rocky elements forming the meteoroids [27]. It is particularly important that information on the chemical composition of large meteoroids that are unable to survive atmospheric interaction (particularly fragile cometary aggregates) is obtained because this will provide clues on the nature of the parent body [28]. Figure 6 is a clear example of a fragile aggregate associated with the Kappa Cygnid stream that disrupted at a height of 75.8 km over the terrestrial surface.

Fig. 6. Ending flare produced by the disintegration of -8 magnitude fireball Trigueros (SPMN230807). The spectrum of the flare appears on left. Note that the bright Moon spectrum appears below it. The calibrated spectrum is shown in a window over the spectrum, where the main elements contributing to the emission lines are given. The abundance ratios of the main-forming elements of the meteoroid were obtained. For more details [28]

CONCLUSIONS

New detection CCD and video techniques are providing significant break-throughs in the study of bright fireballs during their interaction with the terrestrial atmosphere. Fireball monitoring can now be achieved in broad daylight as well as during the night. The new techniques can reduce or eliminate some of the biases of data sampling obtained by previous fireball networks. Accurate orbital data can provide valuable information on the physical mechanisms that are producing meter-sized meteoroids in heliocentric orbit. Fireball studies also provide information on the physical properties (bulk density, dynamic strength and porosity), and bulk chemistry of meteoroids. Many questions regarding the origin of meter-sized meteoroids are still open, and are sharing common problems with NEO studies. Further progress in our knowledge on the regions source of meteorites will require a collaborative effort with other researchers from parallel disciplines.

REFERENCES

- [1] J.M. Trigo-Rodríguez J.M., J. Llorca, A. J. Castro-Tirado, J. L. Ortiz, J. A. Docobo and J. Fabregat, "The Spanish Fireball Network," *Astronomy & Geophysics* 47:6, 26-28, 2006.
- [2] J.M. Trigo-Rodríguez, A. Castro-Tirado, J. Llorca, J. Fabregat, V. J. Martínez, V. Reglero, M. Jelínek, P. Kubánek, T. Mateo and A. de Ugarte Postigo, "The development of the Spanish Fireball Network using a new all-sky CCD system," *Earth, Moon Planets* 95, 553-567, 2004.
- [3] A.J. Castro-Tirado, M. Jelínek, S. Vítek, P. Kubánek, J.M. Trigo-Rodríguez, A. de Ugarte Postigo, T.J. Mateo Sanguino, and I. Gomboš., "A very sensitive all-sky CCD camera for continuous recording of the night sky," in Advanced Software and Control for Astronomy II. A. Bridger, N.M. Radziwill, Proceedings of the SPIE, Volume 7019, pp. 70191V-70191V-9, 2008.
- [4] J.M. Madiedo, and J.M. Trigo-Rodríguez, "Multi-station video orbits of minor meteor showers," *Earth Moon and Planets* 102, 133-139, 2008.

- [5] J.M. Trigo-Rodríguez, J. Borovička, P. Spurný, J.L. Ortiz, J.A. Docobo, A.J. Castro-Tirado, and J. Llorca, "The Villalbeto de la Peña meteorite fall: II. Determination of the atmospheric trajectory and orbit," *Meteoritics & Planetary Science* 41, 505-517, 2006.
- [6] J.M. Trigo-Rodríguez, E. Lyytinen, D.C. Jones, J. M. Madiedo, A. Castro-Tirado, I. Williams, J. Llorca, S. Vítek, M. Jelínek, B. Troughton and F. Gálvez, "Asteroid 2002NY40 as source of meteorite-dropping bolides", *Monthly Notices of the Royal Astronomical Society* 382, 1933-1939, 2007.
- [7] J.M. Trigo-Rodríguez, J. M. Madiedo, I. Williams, J. Llorca, S. Vítek, and M. Jelínek, "Observations of a very bright fireball and its likely link with comet C 1919 Q2 Metcalf," *Monthly Notices of the Royal Astronomical Society* 394, 569-576, 2009.
- [8] J. Llorca, J.M. Trigo-Rodríguez, J.L. Ortiz, J.A. Docobo, J. Garcia-Guinea, A.J. Castro-Tirado, A.E. Rubin, O. Eugster, W. Edwards, M. Laubenstein and I. Casanova, "The Villalbeto de la Peña meteorite fall: I. Fireball energy, meteorite recovery, strewn field and petrography" *Meteoritics & Planetary Science* 40, 795-804, 2005.
- [9] J.M. Trigo-Rodríguez, J. Borovička, J. Llorca, J.M. Madiedo, J. Zamorano, and J. Izquierdo, "Puerto Lápice eucrite fall: Strewn field, physical description, probable fireball trajectory, and orbit" *Meteoritics & Planetary Science* 44, 175-186, 2009.
- [10] P. Jenniskens, M.H. Shaddad, D. Numan, S. Elsir, A.M. Kudoda, M.E. Zolensky, L. Le, G.A. Robinson, J.M. Friedrich, D. Rumble, A. Steele, S.R. Chesley, A. Fitzsimmons, S. Duddy, H.H. Hsieh, G. Ramsay, P.G. Brown, W.N. Edwards, E. Tagliaferri, M.B. Boslough, R.E. Spalding, R. Dantowitz, M. Kozubal, P. Pravec, J. Borovička, Z. Charvat, J. Vaubaillon, J. Kuiper, J. Albers, J.L. Bishop, R.L. Mancinelli, S.A. Sandford, S.N. Milam, M. Nuevo, and S.P. Worden, "The impact and recovery of asteroid 2008 TC₃" *Nature* 458, 485-488, 2009.
- [11] I. Halliday, A.A. Griffin and A.T. Blackwell, "Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids," *Meteoritics & Planetary Science* 31, 185-217, 1996.
- [12] P. Spurný, J. Oberst, D. Heinlein, "Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite", Nature 423, 151-153, 2003.
- [13] A. Pauls and B. Gladman, "Decoherence time scales for meteoroid streams" Meteoritics & Planetary Science 40, 1241-1256, 2005.
- [14] D.C. Jones and I.P.Williams, "High inclination meteorite streams can exist', Earth Moon and Planets, 102, 35-46, 2008.
- [15] J.E. Chambers, "A hybrid symplectic integrator that permits close encounters between massive bodies" *Monthly Notices of the Royal Astronomical Society* 304, 793-799, 1999.
- [16] Trigo-Rodriguez, J.M.; Bottke, W.F.; Campo Bagatin, A.; Tanga, P.; Llorca, J.; Jones, D.C.; Williams, I.; Madiedo, J.M.; Lyytinen, E., "Is Asteroid 2002NY40 a Rubble Pile Gravitationally Disrupted?", *Lunar Planet. Sci.* 39, abstract #1692, Lunar and Planetary Institute, Houston, 2008.
- [17] H.A. Weaver, Z. Sekanina, I. Toth., C.E. Delahodde, O.R. Hainaut, P.L. Lamy, J.M. Bauer, M.F. A'Hearn, C. Arpigny, M.R. Combi, J.K. Davies, P.D. Feldman, M.C. Festou, R. Hook, L. Jorda, M.S.W. Keesey, C.M. Lisse, B.G. Marsden, K.J. Meech, G.P. Tozzi, and R. West, "HST and VLT Investigations of the Fragments of Comet C/1999 S4 (LINEAR)" Science 292, 1329-1334, 2001.
- [18] Y. Ma, I.P. Williams, W. Chen, "On the ejection velocity of meteoroids from comets" Monthly Notices of the Royal Astronomical Society 337, 1081-1086, 2002.
- [19] M. Gounelle, A. Morbidelli, P.A. Bland, P. Spurný, E.D. Young, and M. Sephton, "Meteorites from the Outer Solar System?," in *The Solar System Beyond Neptune*, M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, and A. Morbidelli, Eds., Tucson, Arizona, pp. 525-541, 2008.
- [20] M. Gounelle, P. Spurný, P.A. Bland, "The atmospheric trajectory and orbit of the Orgueil meteorite," *Meteoritics & Planetary Science* 41, 135-150, 2006.
- [21] T. Hiroi T., Zolensky M.E., Pieters C.E., "The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid" Science 293, 2234-2236, 2001.
- [22] H. Hsieh and D. Jewitt, "A population of comets in the main asteroid belt," Science 312, 561-563, 2006.
- [23] L. Johnson, "Near Earth Object Observations Program", online presentation available at: http://www.oosa.unvienna.org/pdf/pres/stsc2009/tech-25.pdf, 2009.
- [24] Bronshten V.A. *Physics of meteoric phenomena*, Geophysics and Astrophysics monographs, D. Reidel Publ., Dordrecht, 1981.
- [25] Brownlee D., et al., "Comet Wild 2 under a microscope," Science 314, 1711-1716, 2006.
- [26] J. Borovička, "A fireball spectrum analysis," Astronomy & Astrophysics 279, 627-645, 2003.
- [27] J.M. Trigo-Rodríguez J.M., J. Llorca, J. Borovička and J. Fabregat, "Chemical abundances determined from meteor spectra: I. Ratios of the main chemical elements," *Meteoritics & Planetary Science* 38, 1283-1294, 2003.
- [28] J.M. Trigo-Rodriguez, J. M. Madiedo, I. P. Williams, and A. J. Castro-Tirado, "The outburst of the Kappa Cygnids in 2007: clues about the catastrophic break up of a comet to produce an Earth-crossing meteoroid stream", Monthly Notices of the Royal Astronomical Society 392, 367-375, 2008.